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1. Introduction and Notation

The problem of approximating delay-differential equations by
sequences of either ordinary differential equations or algebraic
equations has stimulated research for over fifteen years now.
However, it was not until quite recently that convergence proofs in
an operator-theoretic framework were given; see [1] and the
references given there.

In this paper we address a specific problem of the above type,
namely the approximation of the regulator problem of minimizing a
quadratic cost-functional subject to a delay-or more generally a
functional differential equation (FDE). This question also has
attracted attention for quite some time . .Iq f13,15] Ross and
Flugge-Lotz and Solimon and Ray specify certain approximation schemes
leaving open the question of convergence. 1In today's terminology
their methods would be called averaging projections or linear inter-
polating spline scheme {1,8]. Not only doés the question of approxima-
tion of the linear-quadratic control problem for (FDE) present

difficulties, but the theoretic development of existence of solutions,

deriving a feedback law and discussing an operator Riccati equation
is challenging as well. Delfour treats these theoretic aspects
in (4,5] and proves convergence of the averaging scheme, discretizing
space and time variables. We also refer to [S] as a reference on
the literature to the linear-quadratic optimal control problem for
(FDE) up to (1977).

In the present paper we develop a general theory for the

above mentioned problem, which we subsequently apply to the spline and




averaging approximation schemes. The theoretical aspects are greatly
facilitated by a recent paper of Gibson [6] in which an abstract
linear-quadratic optimal control problem is treated in a general
Hilbert space; it w;s observed that the Riccati-operators satisfy
two (almost) equivalent Riccati integral equations, one of which
coincides with the one used by Delfour in [5], the other one ((2.17)
in this paper), although implicitly present, was not dealt with in [S5].
It should be noted that in our presentation the treatment of the
original problem (as opposed to the approximating ones) is based
solely on integral equations. A second important feature is that
we avoid using the infinitesimal generator of the adjoint of the
solution semigroup associated with the (FDE). All the estimates
depend heavily on the fact that even in the abstract formulation of
the (FDE) (see (2.4)), the control term enters only as an operator
with finite dimensional range.

Many of the technicalities here arise from the fact that we

intend to not only prove convergence of optimal controls, trajectories,

n——_—

payoffs etc., but also want to give some error bounds. This leads

b

to an essential difficulty which is described at length in Remark 2.1.

The paper is organized in the following way. Section 2
contains the statement of the problem and its (theoretical) solution.
Then a sequence of approximating problems is specified and the
convergence results are stated, leaving technical proofs to Section S.
In Section 3, we first show how the results of Section 2 can be used
for spline approximation schemes. For linear and cubic splines we
give all the details, demonstrating convergence of the linear spline

scheme and quadratic convergence on certain subspaces of the cubic

13




spline scheme. Averaging projection schemes are discussed in
Section 4; the approximating equations in this case turn out to
coincide with those proposed in [2], [13] and [15].

Most of the notation that is used throughout the paper is quite standard.

For a closed interval I « (-»,), a Banach space X with nom I-Ix. and p>1,

the equivalence class of measurable functions x: I - X with

[x(s)|Pds < » is denoted by LP(I;X). |[-] or simply
1 X

LP(1;x)

|« p is the notation for the usual norm in LP(I;X). The space of
L

continuous functions on I with values in X endowed with the
supremum norm is denoted by C(I;X) and Ck(I;X), k=1,2,...

stands for the space of X-valued continuous functions which possess

k continuous derivatives on 1. Wk’Z(I;X), k =1,2,... 1is the space
of (k-1)-times continuously differentiable functions whose (k-1)-st
derivative is absolutely continuous with derivative in

LZ(I;X); |‘|wk’z(1 X) denotes any one of the commonly employed

Wk’z-norms. The space of all essentially bounded and strongly

H
!
measurable functions from I to X is denoted by 4, (I;X). In the ,

special case of I = [-r,0], 0 <t <® and X = R" we shall

ck ks 2

abbreviate the notation of the function spaces by Lz, , etc.

For Banach spaces X and Y, the set of all bounded linear
m
operators from X to Y is denoted by (X,Y) and for YR"R)
we simply write RY™, For A€ Z(X,Y) the strong operator-norm

is denoted by ||A}] A" stands for the Hilbert space-adjoint

LX)
of an operator A from a Hilbert space H to H. R" is endowed

with the euclidean norm |-| . and (-,') , stands for the usual !
R R




R . n . n*m
inner product in R°. For elements in R we use the spectral
norm. Wherever the contents permits we drop the subscript of a
norm, simply using |°| for the norm of elements of a Banach space

and ||-|| for that of operators between Banach spaces.
The state space of our presentation will be R" x LZ(-r,OﬂRn)

with the norm

0 1/2
2
[(n, )] = (Inlm" S OIROIED

where the weighting function p: [-r,0] *R is a piecewise con-
tinuous and positive function. We denote by Z (or Zp where
necessary) the space R" x LZ(-r,OﬂRn) together with the weighted
norm. The symbol <-:,.> stands for the natural inner product in 1
and Pl, P2 denote the projections of Z onto its first and second
components respectively. ifk and pk,2 stand for subspaces of Z
given by {(4(0),¢)] ¢ € ck} and {(9(0),9)| ¢ € wk»2y respectively.

. ®
A family V(t,s) of operators in %(Z,Z) with to <s<tc<t

is called evolution operator if V(s,s)z = z, if V(t,s)z = V(t,r)V(r,s)z
and if t - V(t,s)z is continuous for all z € Z and

tp $s<srets t". The derivative of a function x is denoted by

x or also x', and, finally, for x: [-r,a) »IR“, a > 0, the symbol

Xe» 0 <t < o stands for the function [-r,0] » X given by

xt(s) = x(t+s) for s € [-r,0].
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2. Approximation of the Linear-Quadratic Control Problem

For (n,¢) = z € Z and (to,t*) €R xR we consider the

functional differential equation (FDE)

*

x(t) = L(t,xt) + f(t), for to <s <t<c<t
(2.1)
x(s) = n, x, = ¢
where
3 0
(2.2) L(t,0) = 1 A (t)0(-1y) + I A_;(t,s)¢(s)ds
i=0 -r

Here we let 0 = T, < Ty < ... < r, =r and the matrix-valued

functions A for i = -1,...,8 are considered as operators in

i’
A; € C(tg, t"R™™), for i =0,...,0.md A € C(ty,t"5Li(-r,0m™™))
respectively, and f € Lz(to,t*ﬂkn).

We also need to restrict our attention to the homogeneous

problem

x(t) = L(t,xt), for to

A
17

A
ct

1A
(g

(2.3)
x(s) = n, xg = $.

It is quite well known [8] that solutions to (2.1) and (2.3) exist
and that they do not depend on ‘the representation of an equivalence
class ¢ € Lz . We shall denote the solutions by x(-,s;z,f)
and x(-,s;z) respectively, dropping arguments if the context

permits us to do so. Let T(t,s): Z + Z be the solution operator

S




associated with (2.3), i.e.

%

T(t,s)z = ((x(t,s;z),xt(~,s;z)) for tp <s <t <th

Then T(t,s) 1is an evolution operator on A = {(t,s)]| tg < s <t < t*}.

In the next lemma the weighting function for the norm of 12

is chosen identically 1.
Lemma 2.1. Exponential bounds on T(t,s) are given by
IT(t»S)ZIZi < Méw(t's)lzlZl for (t,s) € A,

where

%
m=(1+ 5 sup, lla;0)]])M?
i=1 t€(t,,t"]

and

w =M+ sup llA_l(t.')ll:
tE[to’t ]

with A-l(t,-) considered as an element in Lz(-r,OJR“x“).

For the proof see [12, Theorems 2.1 and 3.5].
We return to (2.1) and recall the following variation of

constants formula.




-
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Lemma 2.2. If for z, € Z we define z(t,s;zo)€ Z by

z(t,s;2q9) = (x(t,s;zp,f), x.(+,5;25,f)) for (t,s) € A

then

t
(2.4) 2(t,5529) = T(t,5)2g + [ T(t,0)(£(0),00do, for (t,s) € A
S

This result is proved in [12]) and in the autonomous case it also
follows trivially from [1], [3], [9].

In this paper, we shall consider the following optimal control

problem:

r
Find u € L%(ty,t*;R™) which mininizes
®

J(ty,n,0,u) = (FX(t*),x(t*))]Rn + IZO(D(t)x(t),X(t)%Rndt
o

(P) 1 . [to(c(t)u(t),u(t)%kmdt

subject to

tt

*A

x(t) = L(t,xt) + B(t)u(t), t0 <t

L x(to) =N, x, = ¢, where (n,$) € Z and to,t* are given.
0

In the notation of the cost functional J we let x(t) stand
for x(t,to;n,¢,B(t)u(t)). The assumptions on F,D,C and B are

the following:

w




n .n . s
Fe YR JR"), selfadjoint, nonnegative,

D € .QL(ﬁo,t*ﬂRnxn), selfadjoint, nonnegative,

(2.5) § Ce B (t,,t*R"™), selfadjoint, C(t) > ¢ > 0

for some ¢ > 0 and almost all t,

L Be 2,0t R,

For the presentation of the approximation results we choose a
sequence of closed linear subspaces {ZN}N=1 of Z and orthogonal

projections

Z+1, for N=1,2,...

We shall also use the operator QO: R » 2 given by
Qyn = (n,0).

0f course, Q0 can be represented as an n X n - Z-valued matrix by

(1,0) o

Qp = N

0 (1)

where O stands for the zero-element in 2. In general, we shall not

distinguish between the operator Q, and its representaiion. With

this notation (2.4) can be written z(t,s;zo) = T(t,s)zo + [ T(t,o)Qof(o)do.
S

Motivated by earlier work on approximation of (FDE) [1,3,8] we may




impose the following hypotheses:

(H1) There exists a family of evolution operators TN(t,s): 7+ 27,

for N =1,2,... and (t,s) € A such that

(i) ||TN(t,S)|| < Hew(t_s) for some M > 0, @ € R,

N

(ii) T™V(t,s)zN ¢ 2V for all (t,s) € 4,

(iii) there exists a real-valued function P such that
|T(t,s)z - TN(t,s)zI < P(N,z).

Of course in the examples that we have in mind © will tend to 0
at a certain rate as N goes to «; the dependence of P on z
will also indicate possible dependence on derivatives of =z (compare

Section 3).

(H2) 1lim PNz = z for all z € Z.

N+

To get estimates on the rate of convergence we need to introduce
a family of operators QN:ZRn + 2, which act as'smoothing operators"

for QO'

(H3) There exists a sequence of operators QN:.RP + 2, N=1,2,...,

such that
(i) Q&P c ZN
(ii) IIQN-QOII n < P,(N) for some real-valued
Z®Yz) - Q

function DQ

‘:
-
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(i13) 1V

< q for some q > 1,

Z®R";2)

independent of N.

Throughout this section we assume (H1)-(H3) to hold. A possible

candidate for QN is the matrix whose columns are the orthogonal

projections of the columns of Q0 onto ZN.

Notice that (H3) (i)
implies that there exist a matrix Qg € EZGRnJRn) and a function-
valued matrix Q? € L%(-r,0;RY™) such that ((Qg)j,(qf)j) e N

for j = 1,...,n, where (E); stands for the it column of a

matrix E. In the examples that we have in mind QN can always be
chosen as a diagonal matrix, with diagonal elements in 1R X LZ(-r,OﬂR)
approximating (1,0) € R X LZ(-r,OﬂR). The need for introducing the
family QN to obtainestimates on the rate of convergence will become

apparent from the analysis below. The underlying problem, however,

can be explained for real-valued functions on [-1,0].

Remark 2.1. To demonstrate the need for introducing the family of

operators QN let g [-1,0] e R be given by

Q:

1 for s =0
gg(s) =
0 for s € [-1,0).
It is not hard to find a sequence of functions N’ [-1,0] + IR, such
that (@) gy(0) = 1, () lgyl , = OLig) for some © > 0, (¥) gy €
Wl’z(-l,OSR) and ($§) IQN] 1 $ M for some 'Ml independent of N.
L

In fact, we may take

s e S ————— e Wi} tomean s At = e et
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Nt +1 for t € [- %,01
gy(t) = ;
0 otherwise

however, Iénl , diverges like /N. For functions in Wz’z(—l,OJR)
L

we analyze the question more precisely: there exists no family of

functions {gy} such that

~

(i) lém gy(0) = 1, for all N

(ii) lﬁm |gN| 5 =0, for some p > 0
(2.7) < ) %
(iii) gy € W’7(-1,0;R)

\ (iv) lgNle <M, and |§N|L25 M,, both uniformly in N.

Proof. Assuming (i)-(iii), we argue that (iv) cannot hold. We first
show that 1lim gN(-l) = 0. For suppose there exists a subsequence,
again denoted by gy such that gN(-l) >a > 0, for all N. (The

case @ < 0 1is treated similarly.) Then
€-1
gy(e-1) = gy(-1) + I-l gy(s)ds > o - vE M, .

Therefore, there exists €g > 0 and @ > 0 such that gy(e-1) 2 T >0
for all N and € € [0,80]. This contradicts (ii). Next, we

verify that 1lim QN(-I) = 0. If not, there exists a subsequence,

again denoted gy gy such that éN(-l) >d > 0, for all N; (the

case & < 0 is treated similarly). Then

€-1

By(e1) = gy(-1) + egyC-1) + | | LR 2 gD ¢ by, /P,
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so that there exist constants EO >0 and k>0 such that gy(e-1) > gy(-1) + ek,

for all N and ¢ €[0,EO], which again contradicts (ii). In a

similar way one can show that 1lim QN(O) = o, Since the left-hand-
N

side in the next estimate tends to =

0 1/2
o . . 2
I8N (0) - gy(-1) < [I 1IgN(S)| dS} ,

we see that (iv) is violated and hence the proof of the above claim
is completed.

There is yet another way of considering properties (i)-(iv),
interesting from the point of view of spline analysis. We let

§N € wz’z(-l,OﬂR) denote the unique cubic Hermite spline function

given by
(
~ N ~ N
S&(tj) = sN(tj) =0 for j =2, ,N
~ N ~ N
(2.8) J 3 (t]) = 0, 3'(t)) =g,
EN(O) =1, §&(0) = o,
“
for a partition t? = - % » jJ=0,...,N of [-1,0). A simple

calculation shows that

(-2N3 + @+B)NO)e3 + (oN + BN - NP)tE +at + 1 for t€ [t‘f,m
Sy(t) =
0 otherwise.

We recall that the variational problem of finding the function

v E WZ’Z(-I,OﬂR) satisfying (2.8) and minimizing |v]| , 1is exactly

the cubic Hermite spline §N; but |§§| , diverges like N2, of
L

course, a similar negative result can be shown for cubic spline functions.
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To relate the above observations to the operator Q0 we suppose r=n=1 and
ZN c {($(0),$)] ¢ € wz’z(-l 0;R)}. Then we have demonstrated that there does not
exist a sequence of operators Q R+ Z' such that 11m IIQN QO"£{@R 7) = and

such that || d(PZQ )I'SfﬂR L2(-1,0R)) and Ild (PZQ )ltz?@Q 12¢-1,0m)) 2r®
uniformly bounded in N; here d denotes the differentiation operator.

To explain the significance of the above negative result, we
recall that in order to get good convergence results in spline
analysis, the (Lz-and Tschebyscheff-norm of the) derivatives of the
approximated function play an essential role [11,14]). In the next
section we shall apply the general result of this section to specific
spline approximation schemes, and it is no surprise that again the
convergence of TN(t,s)z to T(t,s)z depends on the smoothness
of 1z, (see [3]). A brief look at (2.4) indicates that this will cause
severe difficulties, since under the integral the operator T(t,s)
always acts on a discontinuous function. The special form of the
integral will help to get the convergence result. But for estimates
of the rate of convergence of control, state, payoff and Riccati
operator, certain uniformities in the convergence of QN to Q0 would
be needed, which for cubic spline approximations turn out to be those
given in (2.7). '

To get better results than just convergence, in spite of the
above difficulties, we shall use the following simple technique,
which we explain by using 8g* For some desired accurracy € determine
a function gN (QN or PNQ0 later on in this paper) such that
gN(O) = 1 and |gN|L2 X €. Moreover, gy will be chosen in such a way }
that it suits our smoothness requirements for the specific situation

and such that there exists a sequence of functions g;, whose '




14

convergence to gy is of a desired rate. This ends Remark 2.1.

We return to the development of the theory begun nrior to this long
remark and aim at an "abstract' formulation in the space Z of
problem (P). We shall need the operators @ and
e Aty tLB™2), 9 and € B (ty,t* L(2,1) and F
and #N € £(2,7) given by

B(t) = QuB(t) and @"(t) = QMB(Y),

F(n,$) = (F(n),0) for (n,6) € z and FN = pPNgpN,

P(t)(n,¢) = (D(t)(n),0) for (n,$) € Z and 2N(t) = PNo(t)pV.

Lemma 2.3. The operators 4 and QN,_@ and _@N,? and EV

satisfy the same properties as B,D and F in (2.5) respectively.

Moreover,
2*(t)(n,9) = B*(t)n, for (n,$) € Z and t, <t <th,

0
- (@M ) (,0) = B )@ *n + f B* () (@) * (s)¢ (s)ds,
-r

e Ll i ot <y =

and

(@M)* and 2" € 4 (ty,t" LERY).

Proof. We shall only verify the representation of (5?N)*. Se let

v €IBF, and (n,$) € Z be arbitrary, then

l ' o - B— T P sty IR NSRS



w-
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Ny (n,8)> = (Q)B + fo N(s)B(t)v,¢ d
<@ v,(n,*)> = (Q (t)v,ﬂ)IRn _r(Ql(S) (t)v, (s))m"‘ s

0
B O™ o ¢ [ B @) 9)00)) s

0
* N, * + N, * ?
(v,B*(t) [(Qy) "n [_rcol) &)o(s)1) .

Next we introduce the family of approximating optimal control

problems in which the original problem (#)is imbedded. Let

0

t,s) = T(t,s), PP = 1, 8%(t) = @(1),Q° = q,,

29 9 and g0 = %,

and consider

(For ty€ R, t*e R and z€ 2Z given, minimize

3 (g, Pz u) = VN ) N ety o

+ It*(<gN*" )2V (1), M (e)>dt + (C(tu(t),u(t)))dt
CAUE ‘0

over ue Li(t),t"®" subject to

(2.9) @) = TV (e, )PPz [: ™ (¢, M@ (Ru(n)dn

%
L for t; st gt

For u = N=0 and by Letma 2.2 we have (90'0) = (). We first address ourselves
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to solving (E?N’u), N,u = 0,1,... and to the question of the
behavior of the solution of (QN’“) as N,u »«, Problems (QN’M) are
special cases of the linear quadratic optimal control problem considered
in [6]. Applying this result we outline the solution of (E?N,").

Under the assumptions on F,D and C the unique optimal controls

are the solutions of
J N+u - 2 * _m
(tO,P z(to),u)v = 0, for all v €L (to,t R,
where
J'(tO,PN+uz(t0),u)v
denotes the Fréchet-derivative of J at u in the direction v,
Therefore, after some calculations one finds that the optimal controls

aVM are given by

(2.10) @M (e) = -((VI:(’)“)-IWN’uz)(t) a.e. in [tg,t*]

to
where
Vit e sl (eg, ttmY, Ly, et R™)
0
and
LA CRRICAAE D)
0
and

PP PRI

~ s v oot e M Sy

w— -
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(z.11) ViMoo e (9”)*(72““)*9”*‘??‘"9"
0 0 0
v (@M (N gl gh,
0 0

N
(2.12) Wt

Here

Ter € L0l (tg,t%2), 1y, t2))
0

FMe vl t*0,1
to 0

T’;‘*“ € y(z,LZ(to,t*;Z))
0

are defined by

s
T = [ M meman, or ¢ € Leg,et
0

(92‘;‘6) - c7§;"¢)(t*),
. t*
W% ) - [t ™*™)* (n,£36 (n)dn,

(@ DE = ™05 for dez
(M) = T (¢t )i
0
Consider for a moment the optimal control problems (S?N'u) with
J(to,PN’"z,u) replaced by J(s,PN*uzN'"(s),u), tg S8 ¢ t'; letting

\

SRR C O NT AU Al L (@™ (FY PN (e ey
0 0 0 0

R N UV VY
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Gg’" denote the corresponding optimal control, then it is clear

from the above that

2.13) (M) = -l TN PN ) () vl in s,
if v e wLls,t*m™), L¥(s,t* R™) and WM e o(z,12(s,t* B™)

S

are defined analogously to V?’u and Wz’u in (2.11) and (2.12)
0 0
respectively. For 1z € Z the optimal trajectories SN’u(t,s)z

corresponding to J(s,PN+uz,u) are then given by
(2.14) sNM(e,s)pPNM, = TN 5PN,

t
] j TN+u(t,n)f?N(n)((V:’u)-le’uPN+uz)(n)dn.
S

In [6] it is verified that SN’uﬁ;s) is an evolution operator on A

for each N,u and moreover that a'* is also given by
(2.15) @WoRe) = -cThey (@M e N H ()sN o (e, e 0PN 2, ae,
with

(2.16) V()P = (TN e, ) EVRSN R ot PN,
®

t .
* It (MM (0, ) DN () sV ¥ (n, ) PN M 2dn,

for t5 <t < t*, z € Z.

The basis for the numerical approximation scheme will be (2.10) and

(2.14) together with the following Riccati integral equation for nN’".

e ——— —————— e A
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2.17) T = @ et o et oY,

+

t*
[ ) @) i, 0 (2 ()

™* gV me o @ m)y M 1™ o, P2 dn.

Since Z 1is separable, so that T*(-,-) is strongly measurable,

(2.17) is also a direct consequence of the results in [6]; moreover

HN’u(t) is nonnegative and selfadjoint.
To establish the approximation results we adopt the following
conventions:

(i) 0 as a superscript may be dropped,

(ii) b

sup ., |IB(t)]],
t€ft,,t7]

(1i1) c= suwp , |lc(t)]],

t€ty,t"]
(iv) d =  sup  [[D(D)]],
te[t,,t"]
(v) £ = ||F|| ’
Z(Z,1)

(vi) we assume that M < M, w < @,

(vii) by (H1)(i), (iii) there exists a real-valued function o
such that




. - -

(viii)

(ix)

Lemma 2.4.

(a)

(b)

(c)

20

|T(t,s)z - TN(t,s)PNzl < p(N,z), uniformly in A;

w(t*-t

)
indeed o(N,z) = B(N,z) + Me 0

|PNz-z|,

by (H1)(iii) there exists a real valued function § such

that
Tee,s)QY - ™Y e, < swen,dY,
Z®R,1)
indeed one can let
M+N,Q") = v max  P(N+u, ((Qq);,(Q)).)),
j=l,...,n J J

the constants Ki to be used below depend on the following

variables of (E?N’")

Ki = K;(n,A;,£,d,b,c,a,t9,t%)

and are calculated explicitly in the proofs.

- R

Yo 2@icty,tt®™) :

N,u,-1 -1
v, <c .
e "schZ(to.t*aR”).Lz(to.t*ﬂRm))

There exist constants Kz and l(3 such that for all
z € 2

.
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sup , |, 2)(t) - (pMRNMay )
te[ty,t 0 tg R

< pqMlzlky + 50w, Q0 zIK, + PO, 2K,
+ 1Py - qgll Izlk,,
where

= b/n Mzejs(t*-to)[(Za)-1d+f]

2w (t*-t,)

o
l

[dee*-t) @)t f],

(d) There exists a constant K4 such that for all

we Ly, t' ™,

(v, -V ) () N)kq W] , + PO+, QYK
te[to,t ]I tg tg |5 ks |2 ¥ 4lW|L2

+
+H%ﬂ%wuwf

where

kg = b2E B (1+q) L2t to)[ d ]

5 /7

and

2 Wttt *_ . \1/2
ky = BV M e °_) f[—-l— + (t*-to)l/zl ' d[ 1, _(_t__i__]
w

s @
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Remark 2.2. It is simple to check that the same estimates as in the

N,u
]

€ L2,L5(s,t* R™), for s € [ty.t*].

previous lemma also hold for V € :f(Lz(s,t*dRm), Lz(s,t*dRm))

N,u

and Ws

N,u

Theorem 2.1. For the optimal controls u and u we have the

following Lz-convergence result:

G, et
L(tyot* R

p(Nwu,2)Ky + | [PVHQp-Qul| 2,1 + c'z(t*-tO)KllzlloQ(N)k3

P zlky + B, 2K,
+ v, YK, + 110, PN oyl 1K,).

Proof. The proof, using Lemma 2.4, follows from the following simple

estimate

~ ~N,u -1 Yok "L NN+ -
u-u < |V.W_ z - (V) z =
' |L2 | ty o ty " Tty IL2

-1 - v LNk pNH “LNupN, (VN,u “LN,upN+
[V, "W,z -V N z| 5, + |V z ) z| , <
thtg  tot lL2 | to to % Tty 'LZ

A

-1 _ wNmpNﬂ1 (VNJI'I _VNm
c W, 2z z| , + ) (v YV
lto to 12 | to to o

-1, N,u, N+u
) LpN,)
ty "t

<
LZ

A

-1 wN.upNﬂx
c |W,_z - z +
| t 1t lL2

+

-2 M * 1/2
I AR A K, t*-t )%z,
| tO tO ,lﬁf(LZ(to,t*ﬂRm),Lz(to,tﬁﬂﬁm)) 1 0 |2|

Remark 2.4. Although it is not difficult to show that the controls

ﬁN»”; N,u = 0,1,... are continuous, if B(-) and C(-) are and that

VN’u is invertible in .&?(C(to,t*ﬂkm), C(to,t*ﬂRm)) it does not seem
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possible to find a uniform bound on || oMy . . .
Lty t R ,C(tp, t*R™)

We shall, however, consider the question of uniform convergence of

the controls in Theorem 2.4.

Remark 2.4. The use of Theorem 2.1 will be demonstrated for the case
where the subspaces ZN are chosen as subspaces of spline functions,
for example. Then, if one is merely interested in convergence of the

optimal controls gNo*

one may put # = 0 and Theorem 2.1 will
guarantee Lz-convergence of %0 to u. However, if the initial data z € Z are
picked sufficiently smooth one would expect to find higher order
estimates on the rate of convergence. Unfortunately even for smooth
initial data, one still has to deal with the "jump" operator QO used

in the variation-of-constants formula (compare (2.4) and (é?N’u)):

given any € > 0 one can determine N > 0, such that for all

w=1,2,...

1/2

HQg-Q 1 1e L t*-t ) 212lky + ¢ 2(e™t)K |2 [ks]

+ ||PN+uQO-Qo||[c'l(t*-to)llzlzlk2 + c'z(t*-to)K1|z|k4] < e,

Fixing N, Theorem 2.1 guarantees that the optimal controls converge
at a rate given by 5(N+u,QN) and p(N+u,z) into the e-bound as

u+ao.

Remark 2.5. It can be seen easily that Theorem 2.1 remains true if

V" and G are replaced by ﬁg’u and Gs as defined in (2.13).
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For the optimal trajectories S(t,s)z, with (t,s) € A, we have the

following estimate.

Theorem 2.2.

(a) There exists a constant KS, independent of N and W,

such that

ISN’u(t,s)PN+uz| < K5|z| for all (t,s) € A and
and 4, N = 0,1,2,...

(b) There exists a constant K6 such that

N,u

Is(t,s)z - SN (e,s)PN*Wz| < o(N+u,z) + 5(N+u,QN)|z|K6

~ ~N, U
+ 1“ u ‘szs + ‘Z‘DQ(N)k69

where
1 zw(t*-to) 1/2
ke = bM(Z—(e 1))
2w
20(t -t,)
kg = bc lxl(t*-to)l/zﬁcl_ (e 0 1))1/2
20

Theorem 2.3. For all z € Z and t € [to,t]

)
(a) |1nN PN < Fe Okclzl  (Fra(e*-ty)).
®) <a(tiz - M)y < @(t™-tg) + £){BNw,y)|z[Kg
— &
+ e (0 jy | fouan, z) + [2] BN, QKg +

# 15T gk o J2leg®0ks + 12lKs] QP gl 111,

for all y € Z.
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For u = 0 we have the following corollary to Theorem 2.1-2.3.

Corollary 2.1. There exist constants K7,K8,K9 such that

5-aNs0|

(a) [u-u < K [P(N,Qp)[2] + p(N,2) + 0o (M) ]2]],

L2 (tg, t* R™)
() s(t,s)z - s 0, )PN2| < KgIBN,Qp) 12| + o(N,2) + oW |z]],

N,O0.N

(c) <m(t)z - M PVz,y> < Kg[B(N,y)lz| + o(N,2) |y

+ 1yllz] (og(N) + BIN,Qg))].

Proof. By Theorem 2.1 we have

~ ~N,0

(2.18) |u-u < Ky log 2]+ Bv,QY |zl + pt,z) + 11PNy - gl 211,

|
L2 (g t" ™

Since QNIRn c ZN and since PN is an orthogonal projection,

IPNQOn - Qyn| < IIQN - Qyll Inl for all n, which implies that
N
(2.19) I'P QO - Qoll < pQ(N)°
Also, for (t,s) € A we find

(2.200 BN,QY) < 1TCt,8)@"-Qp) ] + [1(T(t,s) - TN(t,$))Qql ] +

11T, 5) (Qg-QM | < 2Me® ()0 Ny + BeN,Qy).

Estimates (2.18)-(2.20} imply (a). Similar calculations prove (b)
and (c). |
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Corollary 2.2. For the payoff J the following estimate holds:

BICT AL UL WRN [CIPRT FIR

< Lt + £1Kgl2) 2lo0wn,2) + B0WH,Q l2lKg + 15384 koo 12lpg00kg] +

1/2

~ ~N -
+ 1P, - QqlIKglzl} + 2[d-d “ﬁszlc Lttt )Y 2wl ey (|12 -

N ~ .
' to U in the supremum-norm.

Finally, we discuss the convergence of u
For the sake of a simpler representation we restrict our attention to

the case u = 0.

Theorem 2.4. If for all z € Z, lim F(N,z) =0 and if B(t) and

N+
C(t) are continuous in t then

lim sup ja(t) - ﬁN’o(t)I = 0.

N-+o te[to,t*]
We draw the readers attention to the fact that all convergence results
were obtained avoiding any specific information about the adjoint
evolution operator or its generator. This is quite important, since
the properties of the adjoint evolution operator are unfavorable to
constructing approximation schemes: if g/*(t) denotes the
infinitesimal generator of the adjoint evolution operator, then

N Dom (¥*(t)) need not be dense in 2
t>t

0

(see [4]) and for autonomous (FDE) Dom(nl*) consists of all elements
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(n,9) € Z with ¢ absolutely continuous on [-r,

1,ri_l), for

i=1,....,24, and with jumps at rs determined by A;. It would
therefore be quite difficult to find a sequence of operators Tf(t,s)
satisfying properties analogous to (Hl1) with TN(t,s) and T(t,s)
replaced by Tw(t,s) and T(t,s)* respectively; indeed we shall see
shortly that ZN < Dom(g/(t)) 1is a very convenient property for

showing that TN(t,s) converges to T(t,s), but the analogous hypothesis

N

YA ~ Dom(g{*(t)) would rarely be satisfied.
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3. Spline Approximation Schemes

In this section we apply the results of the previous one to
subspaces of spline functions. There are three subsections:
(2) Generalities, (B) Linear-spline-functions, (y) Cubic-spline

functions.

(*) Generalities. Spline approximations for (FDE) have been developed

in [3] and we shall use these results here. Throughout, we assume
(2.3) to be autonomous, so that Ai’ i=-1,0,..., are independent of t.

We recall that in this case the solution evolution operator becomes

a semigroup via T(t,s)z = T(t-s)z for z € Z and (t,s) € A, whose
infinitesimal generator &/ is given by o/($(0),¢) = (L(¢),$), where
Dom(gr) = {(n,#)| ¢ € w2(-r,0;R™), ¢(0) = n}. We specify a

weighting function for the norm of Z by

), for j = 1,...,%.

g(s) = j for s € [-rz_j+1,—r2_j

Obviously Z1 and 2 are equivalent Banach spaces, since

-1/2
L / [(ns¢) |7 s l(”’¢)21| gl(n.¢)lzg. We continue to drop the !
g :

subscript g if only the set-theoretic or topological structures

of 7 are important. Next, we repeat a general result from [3],
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and call {ZN,Pg,j{N}, N = 1,2,... an approximation scheme if Ny

is a sequence of closed linear subspaces of 2 {P:} is the sequence

of orthogonal projections, Pg:

g’
Zg > 2N and {AN} is a sequence of

operators Zg > ZN.

N

Theorem 3.1. Let {2 ,PE,Q[N} be an approximation scheme satisfying

(i) zN < pom(), N = 1,2,...

(ii) oY = pggng, N=1,2,...

(iii) (a) 1lim sz =2 in 1 for all z € Z,

N-oo

(b) for some integer k > 1 we have

tim LYY = L) in R" and

N

1im WYyt = v in L% for a1l ¥ € c¥, where
N>

W' is defined by PJ¥ = (wN(0),¥Y).
Then each Q(N is the infinitesimal generator of a Co-semigroup

TN(t), t > 0, such that

™NeysNezV, N=1,2,..., t>0

1im ™(t)z = T(t)z, in 2

N-+oo

and

\ . .
NIV 1, < &Y, JITee) )], < et
g

i g
where

. ' ) 0
R RS SN ITHILES [” 11acsr112as.
= -r
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We carefully avoided ﬁf*, the adjoint of /; however we shall

need

Lemma 3.1. The infinitesimal generators g{ﬁ of (TN(t))*, the

adjoint semigroup of TN(t) generated by ng(Pg, are given by

Dom(ﬁlﬁ) =7
and

oy = (PparP)”.

Proof. Since j{Pg is closed and defined on Z it is bounded; there-
fore pggng is bounded and so is (pgg/bZ)* and Dom(PgQ{Pg)* = Z.
The second claim follows from general semigroup theory ({10, pp. 277}.

We need one more condition on the subspaces ZN

~
N _x

dim Z N

< @ and

(H4) ﬁ for each N = 1,2,... there exists an integeru >0 such that

L Z <1

We now turn to a discussion of the variation of constants
formula (2.9), the feedback laws (2.13) and (2.15) and the Riccati
integral equation (2.17); the assumptions used in the rest of this
section are (H3), (H4) and the assumptions of Theorem 3.1.

The fact that by (H3) the columns of QN are in ZN, together
with (H4) and TV(t)zN < zN¥ imply that for each N there exists
an integer u such that the right-hand-side of (2.9) is in the

N+p

finite dimensional subspace 2 and therefore,
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MMy = NN H )« QMBuce), oty <t o<t
(3.1)

N +

Z ’u(,to) = pg uZ.

By a similar argument we find that HN’“(-) satisfies in ZN+u

the Riccati differential equation

(
N,u
) o @™ e« Y e -
(3.2) < - @M - PNl @ e )
for ty <t <th,

L ety = I,
We also recall the feedback law
(3.3) B =Tty (@M n st e, P,

where SN’“(-,tO)P2+uz is the optimal trajectory corresponding to
(?N’U) .
To approximate (%) by the finite dimensional problems

(E?N’u) we yet have to express the various operators in (3.1)-(3.3)

with respect to some bases in zN,

Remark 3.1. For the reader, who cares to follow the calculations
carried out in this subsection, or the potential applicant of the
resulting finite dimensional linear quadratic control problem, it
might be helpful to think of RM"-vectors as n x n diagonal-valued

matrices.
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For each N = 1,2,... we ncw choose a basis (ET,...,@E )
. N

From N c Dom(o/) it follows that B) = (8}(0),8)) for

1,2

i-= 1,...,kN, with B? €W We shall need the matrix functions

B" = (By,...,B )
1 kN
and
EN - (§N

veea B ).
1 ky

Each element zN € ZN can be expressed as

k
z = ga’, for oN - col(O'-N,...,OlN ) ER N
1 ky

or in terms of elements as

kN kN
N _ ( N N N N)
Z = iZl Bi(o)ai’ izlsiai .

N, ZN, denoted by AN and the

The matrix representation of N 2
coordinate vector of P:z, for z = (n,$) € Z have been calculated
in [3]). To present this result, which is a simple consequence of

ﬁ?(n,¢) - (n,9) L Zg, we define the matrices
. 0
N B, 4 doy o) + f BV(s)* B(s)g(s)as
g -r

0
n(n,8) = <&, (n,0)>, %f No)*n+ f )" (s)g(s)as
g -r
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and
N _ N, Ny oN N s *e o oN 0 N, *:
(3.4) H = h (L(B),B") = B (0) L(B) + I B (s) B (s)g(s)ds.
-r
s N _ aN_N . N . .
Then, if Pg(n,¢) = Ba", the coordinate vector o is given by
(3.5) aN = Ny N (n,¢)
and the matrix representation of Q/N by

(3.6) AN = Ny,

If for any N, one choses W satisfying (H4), then the columns

k
of QN are in zN*M and there exists a vector V% e R N*H
such that
(3.7) QN = BN*HNSH

Since we think of the approximation in N as chosen by the user
according to some desired accuracy which can be achieved by fixing
N sufficiently large and then by letting u + =, the following

formula will be useful

(3.8) sNo¥ . (J"*“)'1<§N*“,BN>Z sN: 0,
g

]
Next, we turn to (QN+") : ZN+" » R". For $N+u =

@M% 0),6M") € 2N define YN'M eR VM, and neR" by
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gN*M _ NN+ (QN+u)*$N+u = n.
Then for all x € R"
B o -
QU NS =, @M
g

or, equivalently

<'BN+U GN’ux, 'BN+UYN+u>

We use Remark 3.1 and easily deduce

oMMy R gNsL N

&
Therefore, the matrix representation [(QN)*] of Q is given by

(3.9) [@N™) = (NN o a0y N BN,
g
N . . N, N.#
Let A, denote the matrix representation of (ng{Pg) , then
(3.10) AN = (gNy 1 aANy*gN,
Indeed, let ¢ = (6(0),0) € 2N and ¥ = (w(0),v) € zV be given
by
A aN N A AN N N, kv N, Ky
$ = B8P and vV =go, for P ER ",0 ER .
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Then the equality

<(PNMPN)*$,$> = <¢,PNopVps
g g Zg g g Zg

implies

<§NA§pN’§NoN>Z - <§NPN’§NANON>Z ,

so that

which upon interchanging v by j on the right hand side becomes

kN kN
4N 2N N N_N aN 2N N
I <B B>, (Ay). .oNoh = <BY, BN (aN), NN

Since ¢ and ¥ are arbitrary, the last equation has to hold for

all vectors DN and ON, and therefore

X k
N N
AN A A A .
i21<Bi,B§>zg(Af)i’j = .Zl<8?,8?>(AN)i’v for all j and v=1,..,k.
= 1=

This equality implies (3.10).

We notice, of course, that if 31,...,Bk were an orthonormal
_ N
basis then A§ would equal (AN)*‘ To find the matrix representation

(0¢t)] of 2V(t) - pgg(t)p: ve let N = 4N¢0),4M) € 2 and




k k
define o eR N and Nem N by

$N - ’B‘NQN and QN(t)&;N - ENYN.
Therefore
2" 8" = PN anyéV - P (30" (0),0)
and by (3.5)
YW= (M N (e)eN0y,0y.
But
N (e)eN0),0) = Ny 803N, 0) = HN¢eyal
where
D¥¢e) = 8N0)*pceyeN(o),
so that
o= (@M eV
or
(3.11) Yty = (™) 1.

36
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In a2 similar manner we see tha* the representation [FN] of
FN = PN?PN is given by
g g
N N, -1zN

(F'] = ) "F,
where

-~ *

N = gNo)"reN(0).

To write equations (3.1)-(3.3) in terms of the coordinate repre-
sentative with respect to the basis chosen, we let HN’u(t) denote

N N

the matrix representation of the operators HN’u(t): YAREE A and

let wN’u(t) = WN’u(t;u) and Wg’u be defined by’

2No¥ ) = BVMNR () and P2+uz = BN

Then (3.1)-(3.3) are equivalent to

Mo ey = ANHNH G - MBe) NP ) for t, <t <t

N,u = W

w
d 1‘,N,u(t) - A‘;ﬂ:"N’u(t) + nN,u(t)ANﬂi R

(3.12) < &
x
- V)] - M) dEBe)Ce)BH ()N RN (e
PRt = )

0

*
L uWH ) =-c )p* ) sVH VRN W (1.

We close this subsection with a final remark on the choice of the

operator QN‘
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Remark. The natural possibilities of choosing QN are to

(@) either take QN = PEQO’ which by (3.5) implies that

(B) or, if the subspaces are chosen as spline functions, to
take the representation of QN:ZRn + Z as the interpolating
spline, which at the knot t = 0 takes the value I

(identity matrix) and O (zero-matrix) on the other knots.

The choice between (@) and (B) has to be made on the ground of
getting the best convergence for 5(N,QN). Condition (H3) is

checked in essentially the same manner for (@) and (B).

(B) Linear spline functions.

We begin this subsection with a brief discussion on the rate
of convergence of the approximating semigroups TN(t) con-
structed in Theorem 3.1. In [3] it is shown that general semigroup

theory provides the following estimate:

There exists a constant M = ﬁ(t*,Ai,lo) such that

®

t
(3.13) |@®)-T0)z] < M| @Mzl + [ 11T gtz s +

+ |- IT()z])

for all t € [0,t*] and z € Dom(ﬁta).
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To give estimates on the rate of convergence for our problem we
use (3.13) together with results from the theory of spline functions to
estimate o » o In spline analysis the estimate on the rate of
convergence of an interpolating spline always contains higher order
derivatives of the function that it interpolates. This constitutes
an essential problem for choosing QN and estimating 5(N,QN),since

(H3) does not allow to pick the representative of QN arbitrarily

smooth.

Although estimate (3.13) (which was derived from general semigroup-
theory) might be too weak for the special case of (FDE), it nevertheless
clearly indicates that the jump operator QO need§ extra treatment.
For spline approximation of neutral functional differential equations
this has turned out to be essential, both in theory and in numerical
work [7].

For the rest of this subsection, we choose u =0 in(EVN'u)

and let N = 0,1,2,...

{(46(0),¢4) € ¥ |¢ first order spline
with knots at t}, j = 1,...,N}, where t? =5 L, =0, N,
PT stands for the orthogonal projection

We denote by ZT
N
]

Zg + ZT, N=1,... . It is proved in [3] that the approximation

scheme {ZT,PT,PT&ZPT} satisfies the hypotheses of Theorem 3.1 and

that dhn(ZT) = n(N+1). Therefore, for each z there exists a real-

valued function EI(N,z) such that

lim 5, (N,2) = 0 and |T(t)z - T'(t)z] ¢ 5, (N,2).

N+
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This and the estimates to follow hold on the interval [O,t*].
By Theorem 3.1 and the above inequality, (Hl1) is trivially satisfied.
Using the triangle inequality, interpolating spline functions and

[14, Theorem 2.4] it follows by a simple density argument that

(3.14) - |PTz-z| < 51(N,z), with 1lim 51(N,z) =90,

U -+

so that (H2) is verified. Moreover for all =z, the operators QT

are chosen as

N _ N
G = P

or in terms of their represenation
Ny _ N
(QI)J = Pl(ej’o)’
where ej, j=1,...,n stands for the n unit vectors in Amﬁ, and

0 for the zero function. (H3) (i) holdstrivially and a short

calculation gives

N
(3.16) JEA ST

< v/n p,(u,(e;,0)),
®2) n mgg 1 (s (e4,0))

and
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||Q’f||mn s b

s
Thus (H3) is verified.

Finally

5.1y Bv,Q) = T - TYIT -

= [IT)p)y - T()Q,ll + T(t)Qy - TVPYQ i <

1A

~ &
N -
e"* 11P]Qy-Qql| + /A max(F, (N, (e;,0)) +
e.

i
wt*.
+ "t 91(N’(ei’0))) <
~ & 4~
< 2 e”t /a(max P (N, (e;,0)) + max £, (N, (e;,0))).
e.

e.
1 1

Estimates (3.14)-(3.17) are exactly those needed for the convergence
results of control, state, payoff and Riccati operators in
Section 2.

By (3.13) we know that on subspaces of Z, determined by
Dom(jyk), k>0, 31 will actually go to zero with a rate given by
convergence of the generators. But this is always at the expense
of 51 not only depending on 2z but also on (at least) the

L2

-norm of its second derivative. So even if we dispense of (H3) (i)
for a moment, high order convergence of IIT(t)Qo - TN(t)Qoll to

zero seems quite unlikely in the light of Remark 2.1.

(Y) Cubic spline functions

In this subsection the general results of Section 2 are used to

discuss subspaces Zg of Z given by
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Zg = {®(0),9) € ile ¢ is a cubic spline with knots at t&, j=0,...N},

]
where again t?'= ;§ i j =0,...,N, and P?: Zg > Zg are the
orthogonal projections. It is quite simple to verify that the
approximation scheme {Zg,Pg,&lg} with &I§ = P§j¥P§ satisfies the
conditions of Theorem 3.1 with dim Zg = n(N+3) and that for u =0
we can derive results similar to subsection ( B8). (H1) is therefore
trivially satisfied. Here, however, we restrict our attention to
the question of rate of convergence on subspaces of Z.

For k = 1,2,... we introduce

o

2% = (00),0) € 752 o e W12 e Wioy = 1Dy, 51, K

Notice that E@k is the domain of the infinitesimal generator of
the solution semigroup of the autonomous equation (2.3) if
considered in the Banach space ﬂVk’Z, (with its natural norm).

In particular, this implies that

.@k is dense in "k’z, k =1,2,...

Moreover,

k

if 2 ¢ 9% then z ¢ Dom(=*'1).

In [3) it is proved that for § = (y(0),y)




v -

43
(3.15) ITN(6)F - TCe)b| < FN,) = ocdy

for $ € 595, where O(lg) depends on ¢(4), and from [14,
N

Theorem 6.9] it follows that

A 1 3,2
(3.16) IARRAK: 0Cp)  for ¥y ew?,

6

A

Therefore, for ¥ € 9
(3.17) o(N,¥) = 0(13).
N
We define the operators approximating Q0 by
A N N
Q% = (503,09 1,..., @3 ®,Q) ),

where Q§ is the n *x n function-valued matrix

sN
N 3
Q3 = \\\ 0 ] ’
0
sN
3

N

sz can be chosen very conveniently as the unique Cz(-r,OﬂR)

function, given by

NNy oo
$70t) = e Nty =0 for 5= 1,.,N

sN(tg) -1,
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Notice that this choice of s; lets the diagonal of the repre-

sentative of Q? become a basis function of 2zV (possibly after

multiplying with some scalar) in the commonly chosen de Boor basis.

The function Sz can be explicitly represented as

(g)s(t+%)3 for t € [- %,0]
sg(t) =

0 otherwise ,

and a short calculation yields

. AN - or 1 .
(3.18) QM) = 11Qq - Q3 || . 0=)
and
N 1
(3.19) Q, - P = 0(—=).
10 - Pl o = 002

The special form of ag and (3.18) imply (H3)(i) and (ii). (H3)

(iii) is verified easily. If u+ N is some multiple of N then

(H4) holds and (H2) is a consequence of (3.16) and density of 1
72 in 2. Finally bounds on P(N+u,QY) are given via the
following lemmas. For $ = (¢(0),¢) € & 1let ¢¥ denote the

interpolating cubic spline function defined by

NN N .
¢I(tj) = ¢(tj) for j = 0,...,N

N1 = o)) = 0.

ot
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Lemma 3.2. For all ¢ = (¢ (0),%) € 92 we have
(3.20) |58 - bl = oo,
L

where 0(1 ) depends only on L and ¢(3) denotes the third
N2

derivate of ¢.
Proof. Since P§ is an orthogonal projection

|pXord - ;¢$|zg = min |z - @8], < VI |@®)] - &lLZ,

N g
z€Z3

where we used the fact that ¢ € 91 and YT is a consequence of the
weighting function g. The last estimate, (14, Theorem 4.5] and

o € 9* imply

(3.21) PN s - bl = ol (63} L.
| 3 I (F)l le

~

We now turn to estimate jiP§¢ - of$ and let P§$ = (¢N(0),¢N).

Then
N
N0 5 < 1@N-eP'| 5+ 1CeT-0)1] 5 <
L L L
N N 1 ,,,03)
SCN¢'¢ “'0()¢ ’
Nle-egl 2 e 2
where the first term is estimated by the Schmidt inequality

[14, pg. 7], the second by [14, Theorem 6.9], and C1 is a constant
independent of N and ¢.
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The last inequality implies
N 1 (3)
(3.22) ID(®7-¢)]| , = 0|6+ .
12 ﬁ? 1.2
A similar calculation gives

N 1, (3)
$(s) - ¢ °(s)] = 0(=n]¢ R
se??E,O]I | N2 | lL2

and therefore, since L is a bounded linear function from

c(-r,0;R") »R"
(3.23) lLe-oM ] < odne 3y .
N L
(3.21})-(3.23) are used in the final estimate
|6 -orb) < | orNo-pYard) « 1PVorb- B <
< |arP¥o-ad) + |PNab-wd) < 0(i7)|¢(3)|L2.
which ends ihe proof.
Lemma 3.3. For all N, and t € [0,t"]

¥ () - Ty = oty |sk|
YmR";2) H w3 2(-r,0R)

Proof, For an arbitrary j 1let QN = (qN(O),qN) = (Qg)j. Notice

that aN € Ns'z(-r,oﬂkn), so that by density of P’ in

— e ——— ——— e
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ws’z(—r,OﬂR") there exists a sequence of functions an e 93

such that

(3.24) q »a in WL,

We turn to estimating ITU(t)c'in - T(t)anl first. Since q_ € wh»2

there exists a constant kl’ depending only on L and t* such that

(3.25) ITA] 5,2 < kylag) 5,5 for te [0,t"1.

Using the fact that an € 593, it is easy to check that
(AOI-Lf)an € 992, for some fixed AO > &, Therefore, there exists

another constant k depending only on L and t* such that

2’
(3.26) 1T(t)(k0-g/)qnlw3,2 < kzlqnlw3,z
If we use (3.25) and (3.26) together with (3.20) in (3.13), we get

Meeva & | = ol
[T (t)aq, - T(t)q,| O(F)anlw3,2.

where the 0(17)-term is independent of a, and t € [O,t*]. The
¥

last estimate, together with

™ ®a" - 1" < 0" - ™Ma,) T mE, - T ) ¢
~o R ~
LT, - TR ¢ 2584 o a5, ¢

1 ,, o &N
+ 0(§7)|qn-q |w3'2.
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which implies the claim.

The estimates (3.15)-(3.19) and Lemma 3.3 are exactly those
estimates, which are needed to apply the results of Section 2, and
essentially establish that cubic spline approximations to the linear-
quadratic optimal control problem (P) are 0(17) convergent for
trajectories, controls and payoffs, if the ingtial data are chosen

from certain subspaces.
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4. The Averaging Approximation Scheme

When applying the results of Section 2 to averaging approxima-
tion schemes, the approximating state - and Riccati equations are found
to be of particularly simple structure; moreover for the class of
problems under consideration we find exactly those equations approxima-
ting problem (P) that were first proposed in [13] and [15]; they
were also derived in {2], and convergence proofs for controls,
state and payoff are provided in [1].

For any positive integer N we partition the interval [-r,0]
into the subintervals [t?,t?_l] with t? = '%§ , for j =0,...,N.
Let x? denote the characteristic function of [t?,t?_l) for
j=2,...,N and x? is the characteristic functon of [tl,tO].

Then the averaging approximation subspaces ZZV of 7 are defined

by

N
ZN = {(n,¢)‘ n G]Rn’ ¢ = 2 VITJXN, VN E]Rn}.

t

av j=1 13 j
We note that (n,0) € ng for each n € R, It is simple to
calculate the orthogonal projection PZV: Z > ZZV; indeed for
(n,$) € Z we have
(4.1) . N (o) = (1 oY
. ay' ’ 551 JXJ
N
N _N I-
where ¢, = — I ¢ (s)ds.
] r N
i

A scheme for approximating T(t) using the subspaces Z:v

has been derived in [1]. This '"averaging approximation scheme" is
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described next. Again, we assumc that the matrices Ai in (2.2)

are independent of t and define a sequence of operators

N ., N
v Z Zav by

zZ

2
N = N T NN N N
EANCORNCL RN 21A1¢“€< Crp + TR0y L z @ D)
i=1 j= J
where
N N
t. t.
N N_N([1 N_N([J1 .
¢0 =n, ¢. = = I $(s)ds, and D. = — I A .(s)ds, j =1,...,N.
T N j r N -1
t. t.
J J
It was shown in [1] that
if we fix the weight functions p =1
N . N
j{av generates semigroups Tav(t) such that
. .
HTY, (][ < M*e” © for ¢ > 0, with M* - M*(A;) and
w* = w*(Ai)
(4.2) J TN ZN c ZN
av-av av
. N
lﬁnPavz =z, for all z € Z,
|T(t)z - T (t)zl < P (N,z) with 1lim Eav(N,z) = 0,
N
— for t in compact subsets of [0,=)

so that (H1) and (H2) of Section 2 are satisfied. The operators

N
Q are chosen as

N N

= Pano - Qo;

(4.3) Q

which, of course, implies that (H3) is trivially satisfied. By (14.1)
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we also have

=
A

(4.4) F MN-= 92 ama 2= 2 -qp.
Now the estimates of Section 2 can be applied; for the optimal
controls, for example, we get by Corollary 2.1

(4.5) |6-3 < K3V1B,, (N,Qp) 2| + o, (N,2)],

and similarly
N,0 N avpx
(4.6) |S(t)z - Sav (t)Pavzl < Kg [pav(N’QO)IZI + paV(N,z)],

<t < t¥

!

for t0

(4.7) etz - 10PNz, s < K3VIE, (N,y) 2] +

+ gy a2yl + [yl 1z]6(N,Qq)]

and by Theorem 2.2

N N

(4.8)  |3(eg,PN2, 8" - J(tg,z,@] < Kijle,, (N,2) 2] + B,,(N,Qp) 2] %],

so that in view of (4.2) convergence of optimal controls, optimal
states and payoff as well as weak convergence of the Riccati operators

is guaranteed.

Finally we give the form of the approximating state and

Riccati equations. We use eg....,eg defined by




52

eN = (1,0) and el = (0,xN), i =1,...,N
0 j j
. N . N N . . .
as a basis for Z . Since Tav(t) leaves Zav invariant, (2.9) is

equivalent to

N

Oty = AN N0ty + YN, 0)

(4.9)
(to) = Pav(n,¢).

which, in turn, is equivalent to

Wity = AngN(t) + col(BuM(t),0,...,0)
(4.10)

w (to) = col(n, ¢ ...,¢g), .

N
where zN'0(t) = % w?(t)e?, ¢? is defined in (4.1), and
j=0
r N r N r, N
Ao NP1 0 0 §Dn-1 Ae* N
N -N
?I ?I 0 0 0
N _ N -N
Aav - 0 ?I —rI 0 0 9
Q
N -N
0 0 0o JI =0
here I 1is the n * n identity matrix. If we let N denote

av

aN,0, SN | N

the matrix representation of + 27, then we find by

N

(2.17) that "av satisfies an [to,t*] the matrix Riccati equation
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% ngv(t) = -('A‘:V)*":V(t) . ngw(t)AI:V ) [D]
(4.11) )
+ %oy ic B Y ()
nl () = [F],

N % N
where (Aav) denotes the transpose of Aav and

D 0 F o
[D] = » [F] = » [B(t)] = col(B(t),0,...,0),
0 0 0 0

[D] and [F] being of dimension n(N+1l) X n(N+1) and ([B(t)] of

dimension n(N+1) X n.

The optimal feedback law becomes
(4.12) V(o) = -y N ow’ ).

Equations (4.10)-(4.12) completely dexribe the approximating linear

regulator problem on the finite interval [to,t*].
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5. Proofs.
In this section we give the proofs of those results tlLat were
not verified in Section 2. In addition to the conventions specified

there, we let PNz = zN for z € Z and N =1,2,...

Proof of Lemma 4.

(a) We use (2.12) to find the following estimate for W?'u:
0

*

t .
] = H@en® [ a™ o0 @™ e,z an +
R t

+

| @M (@M et ) BT et e e ¢

.k
2w(t -to)

A

bq(t*-to]ﬁze dlz] +

— % — %
2w(t"-t,) 2w(t"-ty)

+

bafiie lz] = bae 2] (@(t*-tg) + £).

(b) The conditions on C,D,F and (2.11) imply (b) after a short
calculation.

(c) For ¢t € [to,t*] we have
®

t
|0yz)8) - 2N ) e Igct)*[ T (n,6) Z(N)T(n,tg)z dn -
t
*
t .
. 9”(1:)*[ ™ (n,0)* PN (T (n, )2 Han| +
t

+ 18O T, 0" F T )2 -
- AN Tt AT e Y

= |L ()] + JII (t}).
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The terms Iw and IIw are now estimated separately. Let
T(t) = sgn Iw(t), then
*

t
1,0 s @00, = ([ 100" 20002 &7, @) -

R

*® .
t
(] 0™ @ e an, @) -
t
*

t
- ([, 1o stz an, @ - B -
t

* *
t t N+ +
R (L T(n,6)* 2(MT(n, 1)z - ft T, 2T (1,1 )M, g”(t)r(t)) +
* .
t -+
o L T o0 @m - 2 ™ m,eMan g o) <
*

t._ pu—
< a j ew(n‘t)ew(n-to)lzldn b DQ(N)/E +
t

®
t
o[ camamiz - ™ e, 1,08 0w an +

(a2

x

t
+ 7 <am™ e, 1,088 (o) - ™ (n,0)8N®) ()5 an +

[ad

®

t
. [t «am - P WT M m,e )™, ™ (088w dn

Wt*-t )

< b dvh M|z PN e 0 1ym !

wit -t.)
+badA e 10T o, z) + B, QY[zl] +

Wttty
*badA R ee O @z (1P qll.

Let e(t) = sgn IIW(I). then
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!IIw(t)l < (II,,,(_f:),ea(t))]Rm <

1A

@) 1", 0 T 1)z - V)T, 0 FTE ez, e(t)) +

+

@O 1, 0T T )z - 2N Tt 0 T ) e ) ¢
@V T () F Tt - B )2, e)) -

+

Tt OFT )z, (B(t) - B (t))e(t)> +

+

Ttz ", 0B e(t)s - <FT (", 1) ™, ™ (e* @D e)e(t)s +

+

(F-P gy (t*,to)zN*“, T‘Nm(t*,to)QN(t)e(tb -

_ &K(t*-to)
bf/ |z| Me pQ(N) +

+

Itz - FTV A, Teh 08 e ¢

+

It e, aetn - T At o8N e ¢
2o(t*-t,)
+|[5’-PN+u5’|IE{2e bashi |2| <
5 Zu(t -tg)
< bEJR| 2| We P *+

Bty
+ ba/m|f|M e [p(N#+1,2) + lzla(N*'u,QN)] +

Zo(t"-t,)
+ ba/i|z|Me S Tha WONTR

The two inequalities together imply

s (J1.(e)) + |11 (Y1) <
te[t:?t*] |1, ()] + [11,(t)1) <

o R

2w(t -t,) N _ =t -
oqNIb/ 7P zle 2y + £] « Bov,QMbasR Wiz [ae®® Tt0-nE .

w(t*-t ’u‘:(t*-to)
+

‘“a,‘tt*-t ) )
0 ] + p(N+1,z)bgvh M[d(e 0)-1)6'1 + fe

+ fe

2o(t*-t

. ) Z(t*-t,)
v [P bk Bz Tt tde T @ ege V.
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(d) For w € LZ(_to,t*;]Rm) we next estimate
| (v Vyt m )l =

t*
- 3 et o 9’] T(t*,0) @ (0)w(0)do-
t

t*
- BV T (e, ) A f T (t*,0) @V (o) (0)do| +
*

* t * t

+ |B(t) [ T(n,t) ztn)[ T(n, o) B(0)w(0)dodn -
t t
0

*
t n
-2 ™ en'9™ e [ ™ a,08M e -
t
0
- L1 + 1,0l

Again, we estimate Iv and Hv separately. We let e(t) = sgn Iv(t], then

*
t
L@l = @©*1%,0%% [ 1¢e*,0)8 (o) -
t
0
t*
- 2" 01,0 16,908 Omds, o)) +
t
0
t*
. (QN(t)*T(t*.t)*ff T(t", 08V (0)w(0)do, e(t)) -
t
0

t*

- @O et o ™t 99N omes, ew) ¢
t
0

®
t
» @0 ™ 1t 0P [t ™ (t* o) @M o (0)do, e(t)) =

0
*

t
- aet,o'y L T(t*,0) @ (@(0)d0, (D(t) - B (t))e(t)> +
o




*
t
+ <T(t*,t)*7jt T(t*,0) (B(0) - B"(9))w(o)do, BN(t)e(t)> +

0
*

t
e 5[ t T(t",0) 2" (o)w(0)do, T(t*, 1) 3" (te(t)> -
0

t* L.
hd L T (%, 008" ow(0)do, T (et )8V (t)e(t)> +
0

+

*
o ft
<(F-F L ™ *, 08" ow(do, T (t*,1)8N e (t)> <
0
2W(t*-t

VR Qaypg et OL o0z
L

2w
t*
r<F Jt T(t", 0B (@w(0)do, (T(t*,t) - T (%, 001N De(t)> +

0
*

t
‘< ?I (T(t*,0) - TV (t*,0)) @ (oIw(o)do, TV (¢*, ) BN (t)e(t)> +

t
0 . Zt'n'(t* ) 1/2
o B(tT-t) 071
LS AU g C———
2w L¢ -

- w(e*- 1/2
< bzfﬁ\' ﬂ2(1+q)p (N)ew(t*-t) 1 (e u(t to)- | +
Q - 2

2w
. 1/2
w(t -t)) = &
+ ﬂ)zqf‘ﬁ 5(N+u ,QN)h;‘z ‘e_.;___.'_]-] + e‘-\’(t to) (t*‘to)l/z +
W

_ _ 1/2
+ [1Q - PN"“QOlIbeqZE We 0°le = -1 leLz.

Finally, with v(t) = sgn IIv(t) we get

L.
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(I1,(t),v(t)) =
x

* t * n
(20 [t T(n,6)* 2(n) f T(n, )4 (o)w(0)dodn -

t

Q

t* n
-2 [ o0 [ P e0s ouean, vo) -
0

* n

* t *
- (20 jt T8 2 [t T(n,0)@ (S)w(0)dodn -
0

%
n

t .
LI f T(n,)*2(n) [ T(n,0)8" (O (e)dodn, v(©)) +
t to

* 4

t n
+(9N(t3"f Tcn,t)*g(n)] T(n,0) @™ (0)w(0)dodn -
t t
0

®
t n
- ot [t ™ (n,0)* () [t ™ (n,008™ (0w (o) dadn,v(t) ) +
0

t*
A CACY Jt ™ (n,0)* (2 () -

n
- 2" m) [ 1 08N ewersdn, viey) =

t

0
t* * n N

- ronam [ 10,9@@ - BE@menn, seves
t t
0

®

+ <[: ™ (N,t) 2(N) fn

t (1,9 2N (O (O)dadn, (@ (1) - BV()v(t)> +
0
&

t n
+ [ t- <FMm) f . (T(n,0) - W*“(n,o))g”(o)w(a)do, ™ (n, )2V (t)v(t)>)dn +
0

L.




60

n
+ <9(n) jt (T(,0) - ™ (n,0)) BN (O)w(o)do,
Q
T 0,008V ) v(t)>)an +

t* n
+ L <2 - ") I ™ (1,8 (o) (0)do,
t
0
TNm(n,t)QN(t)v(tpdn <
2u(t*-t

o)

< blak ﬁZpQ(N)lwl R -1](1+q) +
L

/s

. f ‘ d(f: M ea("'°)bq|w(o)|do)5(u+u ,QMbava dn +
0

i f: d(f: 5(N+u,Q”)bqlw(o)1do)v§(”'t)bq,g dn +
0
%

t Py -

+ d| lQO-PN*uQOH ft L ﬁzew(n'o)b2q2|w(o)ldaew(n‘t)v’ﬁ dn <
0

2w(t*-t

)
WA I pglvl , 2o fe V1) (e +
L

2w
2 ZM ~ t* n E(H-O) t* n E(n_t)
« bWk c>(N+u.QN)|jt [t e“("%) (o) |dodn + jt jt * (") 1y (o) { dodn
0 0

t*on- =
R i TS T B R L P
0

— R
w(t -t,)
< bl nszm)|w|Lz L g +




'?' r " ® pe- | , L.g‘.“‘.. —,‘. -::.4""{', L , :“ ‘\":‘fﬁ
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Bt*-t,) (-t )1/2 w(t*-t)
+ db%q /B o, Q) ] Z[_—e R el I
3 w
2w
2 22 o 1 Zult™tp)
+ a’qWA (1o Pyl 1wl e =
L S
The bounds on IV and Hv imply
o) (VY W) ()] <
t€[t0,t )
w(t*-t,)
2 d 0
M2 W (1+q) |w] 12 ] +
R Ly
~ 2 - o 2 1 * _.1/2
+ p(N#1,Q )b M f(——+ (t -t,)"% +
( QN q ,wle( '/{5} 0
* 1/2 %
+ df SN t -to) ) e“u(t -to)
o
+ 2 22 Zﬁ(t*-to) £ a(t*oto)
+ 110gP ™oy (b2 || -2 bneLe .
L m:" m
This completes the proof.
Proof of Theorem 2.2.
t -
@) 18", = 1100 o 1] T e, @0 (o) T (ryany
S
G(t"-t,) B(t*-t) t .
. S
»>-— i -
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“t) New, o O(Et) A
07 N 4 e Tbq (t*-t % ¢t GESLLE AP
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®) |s(t,s)z - SN’u(t,s)PNwzl < |T(t,s)z - ”INm(t,s]zNﬂl[ +
t
+f ITCe, MM VW z) () - T(e, M () (V3 ) W2y () dn ¢
S
t
+ [1ce, o @Oy (M) I N gy - gl
S
- T e, N em () BNy yan <

t —_—
< o) + [ R Wy vy 2y - (o) eI (s

S

t . 1/2 ,t } 1/2
“o([_1Imcemaq - ™ e m| ) (o s oy 2an) 7% <

. t 1/2
< eQw,z) + b [EFY , B[ P Man)
L S

+ bEI:HT(t.n)QO - T(t,n)QN||2)n Ve +

([ Hrce,ma - T ce,ma|| dml’:l l2l K ("t <

Zae*-t
< p(NHy,2) + b]-{) ~N’“|Lzﬁ (;w-_ e ")-1))1/2 .




where

Proof of Theorem 2.3.
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A
+ bc'llZlKl(t*'tO)l/Zﬁ%bQ(N)(J ezw(t°n)dn> -+ 5(N+u,QN)(t*-t0)1/%]

Zﬂ(t t 1/2
= oti,2) + bl AL e SV
R Zo(t*-t)  \1/2
+ be 1|z|1<1(t*-t0)1/2Mp (N)( 0 -1)> "
+ be 2l (e r) Bov,QY)

_ ~ N ~ ~N, M
= P(N+,z) + O(N+u,Q )|z|1(6 + |u-u ’,|L2k5 + IzIDQ(N)k6,

K

e el *_
6 = bc Kl(t t

o)

Wt -t)  \1/2
k = bM — -
5 (zﬁf (e 1))

1/241 Zw(t*°to)_1))1/2.

kg = bc'lxlct*-to) — (e

(a) By (2.13) we have for t ¢ [to,t*]

LR COPALTIPHT TR b TP B TR LTI
®

t .,
+ lf T (n,6) "™ (s (n, £)2MMan| <

T(e*-t,) W(tt-t,)
sBe Ueglzl B O dkgle|(et-ty)
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N RS b AT R TR L TR

*
. ft T, ) *P(MS(n, 1)z -
t

- T (0, ) *FN M () SV (n, £) 2™ yedn <

* * ' 1 *. *
< <FS(th, )z, Tt )y - TV &, )y + <Fs(t*, 1)z -
- @ (1* 0 I e oy - .

+ < (F-FMSH (% ey N Pt s s

*
t

+ [t (<2 M, )z, T, tly - T,y +

+<MISM,1)z - IS ()2 TV (0, )y> Ydn

L]

. |
* f ¢ <(0s" {n, )% - N (o (1, 0 MM T (L 1) ymdn <

= * B(t*'to)
< £ lz|PN,y) + (£+d(t%-t)) [Me I'A (P(N+u,2) +

* B2l + i kg o Jzlog@0kg) +

w(t*-t)
11 QP ™Mo llekg lofMe O [y a2 ("t YBinm, ) +
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—_ %
_w(t -t,)
+ 1Qy Pyl lat* -tk lzlfe — ©)y| =
. _ _B(t*-ty) "
= [f+d(t -t))][Ks|z[p(N+, ) + KM e Iyl 12111Qg-2N oyl | +
(et " N - ~N,u
+He Iy to0wn,2) + 50w, @0l + 15501 Jk + [2logQ0kIT-

Proof of Corollary 2.2.

[, Pz, @) - Jceg,z,0) =

= [<BVHNH Ry N M ety - <tz (t)] +

t* ’

* f <M ()N ), M ()> - cat)z(t),z(t)>]dt +
t

0

t*

jt I @), (1) - Cou),u))lde <

0

+

PHFENH Y - NP et NP ) ¢

‘A

+

FP, M () - 2(e*)), P M) ¢ @Rz, PNt - 2(eh)) ¢

®

t
f <™ )N M) - 2P, NP ) -
t
0

+

+

<) P ) - 2(1)), 2V (0)> + <D()z(t), 2N () - z(t)>|dt +
®

t ~ -~ ~ -~ ~ ~

J 1€ @M - He)),0e)) + oW )i - M) lde <
t
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= ((t"-t)d+DK | z] {2[p(Nou,2) + B, Q) 2lK, |ﬁ-&N’“lLZk5 +

+ l2leqMkgl + |1P¥Qg-gyl[Kgl2l) +

~ ~N -
# 205 £ @tV oswl el el

which completes the proof.

Proof of Theorem 2.4. By Remarks 2.4 and (2.10) it follows that u is continuous.
Moreover by (2.15) we have

lie) - 0] = lew ram*ams, ez - 10w O, Pl

Let €\(t) = sgn C(t) @) * (L) S(t,ty)z - HN’O(t)SN’O(t,tO)PNz), then

lie) - 0l < @wsc,tz - ™00 e )Pz, g™ N

By Corollary 2.1(c) and after our inspection of (2.16) and the proof of
Theorem 2.3(b) it now follows that

i) - #001 < s KBoe1al + ovale] + Tellzd @ + Pave))

where the supremum is taken over {£Z(t)(C(t)-1)*€N(t)|

t € [to,t*], N=1,2,...} a relatively compact subset of 1Z.
(H1), (H2), together with (vii) and (viii) in Section 2, and a

simple compactness argument imply the result,
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